IDS 702 Introduction to Survival Analysis

What is survival analysis?

Survival analysis refers to the analysis of **time-to-event** data.

- A key feature of survival analysis is that **not everyone experiences the event** of interest during the observation window
- Does a new feature lead users to sign up for a premium subscription?
- Does income impact policy renewal?
- Does a new cancer treatment increase survival time?

Application

Clinical research

clinical research

Hardware

Customer analytic

Customer analytic

Unit economics

Product analytics

Employee tenure

Hiring

Engineering

Customer care

Loan repayment

Inventory

https://odsc.com/blog/when-to-use-survival-analysis-applications-in-industry-data-science/

	Event
•	Patient death
	Hospital discharge
	Equipment failure
cs	Churn
cs	First purchase
	Break-even revenue
s	Adoption
	Resignation
	Accepted offer
	Bug ticket closed
	Support ticket closed
t	Loan paid in full
	Stock depleted

Breast cancer data

A dataset that contains patient records from a 1984-1989 trial conducted by the German Breast Cancer Study Group (GBSG) of 720 patients with node positive breast cancer. 686 patients have complete data for the prognostic variables.

hormon (1=received hormonal treatment)	rfstime (recurrence free survival time; days to first recurrence, death, or last follow-up)	Status (0=alive without recurrence, 1=recurrence of death)
0	1838	0
0	403	1
1	1855	0
0	842	1

Visualizing the structure of survival data

Visualizing the structure of survival data

Types of censoring

Right censoring: event occurred after the observation time

Left censoring: event occurred before the observation time \bullet

Interval censoring: event occurred during an interval of time that was lacksquareunobserved

Non-informative censoring

reason that the observation is censored is independent of the outcome

A key assumption in survival analysis is **non-informative censoring**: that the

Kaplan-Meier Survival Method

Goal: We want to estimate the survivor function The survivor function gives the probability that a patient will survive past time t

S(t) = Pr(T > t)

If T represents the time that death occurs, then S(t) gives the probability that the patient survives past time t

Kaplan-Meier Survival Method

$\hat{S}(t) = \Gamma$

- t_i : time when at least one death occurred
- d_i : number of deaths at that time
- n_i : total number at risk at that time (accounts for censoring)

$$\mathbf{I}_{i:t_i \leq t} (1 - \frac{d_i}{n_i})$$

Kaplan-Meier Survival Method

Kaplan-Meier curve in R

${r}$

library (survival) attach (breastcancer) fit.surv1 <- survfit(Surv(rfstime, status) ~ 1)</pre>

Days

Kaplan-Meier curve in R

library (survival)

attach (breastcancer)

fit.surv1 <- survfit(Surv(rfstime, status) ~ factor(hormon))</pre>

col=c(2,4))

legend("topright",c("Trt","No trt"),col=c(4,2),lty=1)

Log-rank test in R

> survdiff(Surv(rfst	ime, statu	ıs) ~ fact	or (hormon)
Call:			
<pre>survdiff(formula = St</pre>	urv(rfstim	ne, status	;) ~ factor
N	Observed	Expected	(O-E) ^2/E
<pre>factor(hormon)=0 440</pre>	205	180	3.37
<pre>factor(hormon)=1 246</pre>	94	119	5.12
Chisq= 8.6 on 1 deg	grees of f	freedom, p)= 0.003

