IDS 702

- The poisson distribution models counts in a specified time interval
- When the time interval is the same for each subject (e.g., awards in one year), we don't need to account for this in the model
- But if the time interval varies among subjects, we can account for this in the poisson model
 - Example:
- This could also mean modeling incidence rates in different populations
 - Example:

> ## Check data				
>	nonmel			
	cases	n	city	age.range
1	1	172675	Minneapolis	15_24
2	16	123065	Minneapolis	25_34
3	30	96216	Minneapolis	35_44
4	71	92051	Minneapolis	45_54
5	102	72159	Minneapolis	55_64
6	130	54722	Minneapolis	65_74
7	133	32185	Minneapolis	75_84
8	40	8328	Minneapolis	85+
9	4	181343	Dallas	15_24
10	38	146207	Dallas	25_34
11	. 119	121374	Dallas	35_44
12	221	111353	Dallas	45_54
13	259	83004	Dallas	55_64
14	310	55932	Dallas	65_74
15	226	29007	Dallas	75_84
16	65	7583	Dallas	85+

- . We can write the rate as counts/population, i.e., $\pi_i = \frac{\lambda_i}{n_i}$
- . Then we can write the model as $log(\pi_i = \frac{\lambda_i}{n_i}) = \beta_0 + \beta_1 x_{i1} + \ldots + \beta_p x_{ip}$

•
$$\Longrightarrow log(\lambda_i) = \beta_0 + \beta_1 x_{i1} + \ldots + \beta_p x_{ip} + log(n_i)$$

Implementation in R

```
> poismod rates <- glm(cases ~ city + age.range, offset = log(n), family = poisson, data =
nonmel)
> summary(poismod rates)
Call:
glm(formula = cases ~ city + age.range, family = poisson, data = nonmel,
   offset = log(n))
Deviance Residuals:
              1Q Median
                                 3Q
    Min
                                         Max
-1.50598 -0.48566 0.01639 0.36926
                                    1.24763
Coefficients:
              Estimate Std. Error z value Pr(>|z|)
(Intercept) -5.4834 0.1037 -52.890 < 2e-16 ***
cityDallas 0.8039 0.0522 15.399 < 2e-16 ***
age.range15_24 -6.1742 0.4577 -13.488 < 2e-16 ***
age.range25 34 -3.5440 0.1675 -21.160 < 2e-16 ***
age.range35 44 -2.3268 0.1275 -18.254 < 2e-16 ***
age.range45 54 -1.5790
                          0.1138 -13.871 < 2e-16 ***
age.range55 64 -1.0869
                          0.1109 -9.800 < 2e-16 ***
                          0.1086 -4.868 1.13e-06 ***
age.range65 74 -0.5288
age.range75 84 -0.1157
                          0.1109 -1.042
                                          0.297
```

Interpretation

Controlling for age group, the risk of non-melanoma skin cancer is 2.2 times higher in Dallas than Minneapolis. We are 95% confident that the true risk ratio is between 2.02 and 2.48, which is statistically significant (p<.001).