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Introduction
Researchers typically do not know with certainty which explanatory variables ought 
to be included in their multiple regression models. More than 50  years ago, stepwise 
regression was proposed as an efficient way to select the most useful explanatory vari-
ables. Despite widespread criticism, it never disappeared and has enjoyed a revival as 
a method for analyzing Big Data, where the number of potential explanatory variables 
can be very large. This paper uses a series of Monte Carlo simulations to demonstrate 
that stepwise regression is a poor solution to a surfeit of variables. In fact, the larger the 
number of potential explanatory variables, the more likely stepwise regression is to be 
misleading.

The stepwise regression method

Efroymson [1] proposed choosing the explanatory variables for a multiple regression 
model from a group of candidate variables by going through a series of automated steps. 
At every step, the candidate variables are evaluated, one by one, typically using the t sta-
tistics for the coefficients of the variables being considered.

A forward-selection rule starts with no explanatory variables and then adds variables, 
one by one, based on which variable is the most statistically significant, until there are no 
remaining statistically significant variables.
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A backward-elimination rule starts with all possible explanatory variables and then 
discards the least statistically significant variables, one by one. The discarding stops 
when each variable remaining in the equation is statistically significant. Backward elimi-
nation is challenging if there is a large number of candidate variables and impossible if 
the number of candidate variables is larger than the number of observations.

A bi-directional stepwise procedure is a combination of forward selection and back-
ward elimination. As with forward selection, the procedure starts with no variables and 
adds variables using a pre-specified criterion. The wrinkle is that, at every step, the pro-
cedure also considers the statistical consequences of dropping variables that were previ-
ously included. So, a variable might be added in Step 2, dropped in Step 5, and added 
again in Step 9.

Some researchers use stepwise regression to prune a list of plausible explanatory vari-
ables down to a parsimonious collection of the “most useful” variables. Others pay little 
or no attention to plausibility. They let the stepwise procedure choose their variables for 
them.

False confidence in stepwise results

Several authors [2–10] have pointed out that standard statistical tests assume a single 
test of a pre-specified model and are not appropriate when a sequence of steps is used 
to choose the explanatory variables. The standard errors of the coefficient estimates are 
underestimated, which makes the confidence intervals too narrow, the t statistics too 
high, and the p values too low—which leads to overfitting and creates a false confidence 
in the final model. In 1995, one educational psychology journal announced that authors 
should not submit papers using stepwise regression [10].

However, stepwise regression remains a popular tool (for example, [11–13]) and most 
statistical software packages include stepwise regression—which evidently reflects the 
demand for it and, perversely, may tempt researchers to try it. A survey of papers pub-
lished in 2004 in three leading ecological and behavioral journals found that 57% of the 
papers that reported multiple regression results used stepwise regression [7]. A survey 
of four leading epidemiologic journals found that 20% of the articles published in 2008 
used stepwise regression [14]. A study of articles published between 2004 and 2008 in 
two leading Chinese epidemiology journals found that, of the articles using multiple 
regression models, 44% used stepwise procedures [15].

Several textbooks endorse stepwise regression [16, 17], including a handbook explic-
itly devoted to data mining methods [18]. The Chartered Financial Analyst Level II exam 
includes stepwise regression [19].

Other problems with stepwise regression

One fatal problem that has not been emphasized is that stepwise estimates are not 
invariant to inconsequential linear transformations. For example, Nobel laureate Milton 
Friedman [20] proposed this model of consumer spending,

where C is spending, Y is current income, and P is permanent income. The idea is that 
households don’t live hand-to-mouth, basing their spending decisions solely on how 

C = α + β1Y + β2P + ε
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much income they are currently earning. They also take into account their average or 
“permanent” income. The difference between current income and permanent income 
is labeled transitory income, T = Y − P. If we interpret the variables carefully, it doesn’t 
matter which two of these three variables, Y, P, and T, are included in the model and 
multiple regression estimates will give equivalent estimates and identical spending pre-
dictions. Not so with stepwise regression. From a list of candidate explanatory variables 
that includes, say, Y and T, both might be chosen, but from a list that includes P and T, 
only P might be chosen.

Similarly, a spending model that uses last year’s income and this year’s income as 
explanatory variables should be equivalent to a model that uses last year’s income and 
the change in income from last year to this year. Multiple regression estimates will not 
be affected; stepwise estimates might.

Thompson [10] argues that another major problem with stepwise regression is that a 
local optimization obtained by including variables one-by-one is not necessarily a global 
optimization. For example, selecting a fifth explanatory variable contingent on the four 
variables that were already chosen does not necessarily select the five variables that give 
the highest possible  R2.

However, global maximization is not a goal worth seeking. Choosing a model’s explan-
atory variables based on  R2 or statistical significance is treacherous—and this is the most 
fundamental problem with stepwise regression and the most compelling reason why 
researchers should stop using it.

Data mining

The traditional statistical analysis of data follows what has come to be known as the sci-
entific method that replaced superstition with scientific knowledge. Based on observa-
tion or speculation, the researcher poses a question, such as whether vitamin C reduces 
the incidence and severity of the common cold. The researcher then gathers data, ideally 
through a controlled experiment, to test the theory. If there are statistically persuasive 
differences in the outcomes for those taking vitamin C and those taking a placebo, the 
study concludes that vitamin C has a statistically significant effect. The researcher uses 
data to test a theory.

Data mining goes in the other direction, analyzing data without being motivated or 
encumbered by preconceived theories. Data-mining algorithms are programmed to look 
for trends, correlations, and other patterns in data. When an interesting pattern is found, 
the researcher may argue that the data speak for themselves and that is all that needs to 
be said. We don’t need theories—data are sufficient.

In addition to those who believe that theories are unnecessary, some believe that data 
should be used to discover new theories (for example, [21–23]). The label knowledge dis-
covery emphasizes that the goal is a data-driven discovery of new, heretofore, unknown 
theories. Indeed, committed data-miners view the use of a priori knowledge of the phe-
nomena being modeled as a constraint that limits the possibilities for knowledge discov-
ery [24].

Sagiroglu and Sinanc [25] describe data mining as a quest “to reveal hidden patterns 
and secret correlations.” In the opening lines to a forward for a book on using data 
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mining for knowledge discovery [26], a computer science professor wrote, without evi-
dent irony,

“If you torture the data long enough, Nature will confess,” said 1991 Nobel-win-
ning economist Ronald Coase. The statement is still true. However, achieving this 
lofty goal is not easy. First, “long enough” may, in practice, be “too long” in many 
applications and thus unacceptable. Second, to get “confession” from large data 
sets one needs to use state-of-the-art “torturing” tools. Third, Nature is very stub-
born—not yielding easily or unwilling to reveal its secrets at all.

The author was apparently unaware of the fact that Coase intended his comment 
not as a lofty goal, but as a succinct criticism of the practice of ransacking data in 
search of statistical significance [27].

Variables should be included in a model because, on theoretical grounds, they should 
be in the model, not based on the size of their t-values. The estimated coefficients of the 
true explanatory variables are biased if variables that belong in the model are excluded, 
and have enlarged variances if variables that don’t belong are included [28, 29].

New life with Big Data

Stepwise regression was born back when computers were much slower than today, but 
it has become a popular data-mining tool because it is computationally less demand-
ing than a full search over all possible combinations of explanatory variables and, it is 
hoped, will give a reasonable approximation to the results of a full data-mining search. 
For instance, Cios et al. [22] recommend stepwise regression as an efficient way of using 
data mining for knowledge discovery (see also [30–32]).

Suppose that a researcher has 100 possible explanatory variables and wants to choose 
up to 10 variables to include in a regression model. There are 19.4 trillion possible com-
binations to choose from. With 1000 possible explanatory variables, there are 2.66 × 1023 
combinations of up to 10 variables. With one million possible explanatory variables, the 
number of possibilities grows to 2.76 × 1053.

Stepwise regression circumvents the computational burden of trying all possible com-
binations of explanatory variables, by testing variables, one by one, in each step. The 
use of forward-selection stepwise regression for identifying the 10 most statistically sig-
nificant explanatory variables requires only 955 regressions if there are 100 candidate 
variables, 9955 regressions if there are 1000 candidates, and slightly fewer than 10 mil-
lion regressions if there are one million candidate variables. This simplification is very 
appealing, and many researchers working with Big Data have succumbed to the appeal 
of stepwise regression.

However, the more variables that are considered, the more likely it is that coincidental 
statistical relationships will be discovered. Calude and Longo [33] prove that

the more data, the more arbitrary, meaningless and useless (for future action) cor-
relations will be found in them. Thus, paradoxically, the more information we have, 
the more difficult is to extract meaning from it. Too much information tends to 
behave like very little information.
If there is a fixed set of true statistical relationships that are useful for making pre-
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dictions, the data deluge necessarily increases the ratio of meaningless statistical 
relationships to true relationships.

The fundamental problem with the notion that data come before theory is simple: We 
think that patterns are unusual and therefore meaningful; in Big Data, patterns are inevi-
table and therefore meaningless.

Stepwise regression steps—indeed leaps—into this trap. It follows automated rules 
that only consider statistical correlations, with no regard for whether it makes sense to 
include a potential explanatory variable. It is data without theory. It is data mining on 
steroids.

Methods
A Monte Carlo simulation model can be used to demonstrate the core problem with 
stepwise regression and how the problem is exacerbated in large data sets.

Steyerberg et al. [34] argue that stepwise models do poorly in small data sets, an argu-
ment they illustrate by applying stepwise regression to subsets of a data set with 4, 8, or 
16 explanatory variables (whose estimated coefficients are assumed to be the “true” val-
ues). Derksen and Keselman [35] analyze 250 simulations of a Monte Carlo model with 
12, 18, or 24 candidate explanatory variables and conclude that stepwise regression often 
chooses the wrong explanatory variables. Done decades ago, when computer capabilities 
were modest, these tests were understandably limited to a small number of explanatory 
variables and simulations.

The simulations here use n = 10, 50, 100, 200,250, 500, or 1000 candidate explanatory 
variables. In each simulation, 200 observations for each candidate variable are deter-
mined either by random draws from a normal distribution,

or by a Gaussian random walk,

where ε is normally distributed with mean 0 and standard deviation σx. In the non-drift 
model, the values of each variable are i.i.d; in the drift model, changes in the values of the 
explanatory variables are i.i.d.

Five randomly selected explanatory variables (the true explanatory variables) are used 
to determine the values of a dependent variable

where the value of each coefficient is randomly determined from a uniform distribution 
ranging from − 2 to + 2, excluding − 1 to + 1, and υ is normally distributed with mean 0 
and standard deviation σy. The range − 1 to + 1 was excluded so that none of the coeffi-
cients of the real variables would be approximately zero. The other n − 5 candidate vari-
ables are nuisance variables that were determined independently and have no effect on 
Y, but might be coincidentally correlated with Y. The simulations use σx= 5 and σy = 10, 
20, or 30.

(1)no drift: Xi,t = εi,t ε ∼ N [0, σx]

(2)drift: Xi,t = Xi,t−1 + εi,t Xi,0 = 0 ε ∼ N [0, σx]

(3)Yt = α0 +
∑5

i=1
βiXi,t + υt υ ∼ N

[
0, σy

]
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After generating the data for the explanatory variables and the dependent variable, a 
stepwise regression procedure was used with the n candidate variables evaluated in ran-
dom order. At each step, the potential explanatory variable with the lowest two-sided 
p-value is added to the equation if this p value is less than 0.05. One million simulations 
were done for each parameterization of the model.

The central question is how effective stepwise regression is at identifying the true vari-
ables that determine Y, so that reliable predictions can be made with fresh data. So, in 
each simulation, 100 observations were used to estimate the stepwise model’s coeffi-
cients, and the remaining 100 observations were used to test the model’s reliability.

In practice, a stepwise regression procedure might sometimes select explanatory vari-
ables that, although not directly affecting the dependent variable, are systematically 
related to variables that do affect the dependent variable. For example, consumer spend-
ing depends on income, which is related to years of education. Even if education does 
not directly influence spending, it is a noisy proxy for income and might find its way 
into a stepwise regression equation. All the explanatory variables in these Monte Carlo 
simulations were generated independently (so that there are no proxy variables) in order 
to focus on the fact that stepwise regression might be fooled by purely coincidental 
correlations.

While they might be fortuitously correlated with the dependent variable during the 
estimation period, nuisance variables are useless out-of-sample because they are truly 
independent of the variable being predicted. The selection of nuisance variables by the 
stepwise regression procedure gives a false confidence in the estimated model because of 
the high t values and the boost they provide to R2.

An extreme case (that did happen in some simulations) is when all of the explana-
tory variables chosen by the stepwise procedure are nuisance variables. Although there 
might be a great fit during the estimation period, the prediction errors will be large out-
of-sample because the dependent variable will be predicted based solely on the values 
of irrelevant variables. There are less extreme consequences in less extreme cases, but 
when nuisance variables are included in the stepwise equation, we should anticipate that 
the prediction errors will be larger out-of-sample than in-sample.

Table 1 Average number of explanatory variables per equation, σx = 5

Candidates No drift Drift

σy = 10 σy = 20 σy = 30 σy = 10 σy = 20 σy = 30

10 5.25 4.74 3.45 5.59 5.54 5.13

50 7.51 6.99 5.68 8.14 7.81 6.52

100 11.25 10.71 9.44 10.03 9.19 7.31

200 27.67 26.75 25.34 13.03 11.03 8.43

250 56.75 56.78 55.59 14.45 11.88 9.00

500 97.64 96.82 94.91 32.26 21.04 14.85

1000 98.55 97.88 96.92 70.11 57.30 42.79
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Results
Table  1 shows the average number of explanatory variables selected by the stepwise 
regressions. These are not affected much by the standard deviations, at least for the 
range of values considered here. For σx = 5, σy = 20, and 100 candidate variables, the 
average number of explanatory variables chosen by the stepwise regression was 10.71 
(no drift) or 9.20 (drift), and the longest stepwise equation among the one million simu-
lations had 32 (no drift) or 29 (drift) explanatory variables. Overall, the average num-
ber of explanatory variables chosen by stepwise regression increases with the number of 
candidate variables.

Table 2 shows the frequency with which a variable included in the final stepwise equa-
tion was, in fact, a nuisance variable. The standard deviations do not matter much, but 
the nuisance probability increases substantially as the number of candidate variables 
increases. Even with only 100 candidate variables, it is more likely than not that a vari-
able chosen by the stepwise procedure is a nuisance variable, rather than a real variable.

Table 3 shows the frequency with which the true variables were selected. Because 
the standard deviations do not matter much, results are only shown for the case σx= 5 
and σy= 20. For example, in the no-drift model with 100 candidate variables, all five 
true variables were included 49.5% of the time—which means that at least one true 
variable was excluded 50.5% of the time. In the drift model with 100 candidate varia-
bles, all five true variables were included 53.8% of the time—and at least one true var-
iable was excluded 46.2% of the time. As the number of candidate variables increases, 
the chances that all five true variables will be included in the stepwise equation falls.

Table 2 Frequencies for an included variable being a nuisance variable, σx= 5

Candidates No drift Drift

σy = 10 σy = 20 σy = 30 σy = 10 σy = 20 σy = 30

10 0.048 0.055 0.073 0.106 0.113 0.131

50 0.335 0.371 0.464 0.388 0.429 0.497

100 0.556 0.599 0.693 0.507 0.570 0.645

200 0.820 0.846 0.891 0.628 0.704 0.768

250 0.912 0.927 0.948 0.667 0.745 0.804

500 0.949 0.963 0.975 0.860 0.890 0.909

1000 0.959 0.967 0.986 0.945 0.967 0.970

Table 3 Frequencies for the number of true variables selected, σx = 5 and σy = 20

Candidates No drift Drift

< 3 3 4 5 < 3 3 4 5

10 0.016 0.082 0.302 0.600 0.009 0.017 0.018 0.955

50 0.025 0.103 0.324 0.549 0.079 0.088 0.090 0.743

100 0.035 0.125 0.341 0.498 0.175 0.145 0.137 0.542

200 0.057 0.167 0.359 0.417 0.331 0.198 0.151 0.320

250 0.049 0.177 0.358 0.416 0.388 0.207 0.148 0.256

500 0.154 0.255 0.329 0.262 0.580 0.203 0.110 0.108

1000 0.320 0.240 0.260 0.180 0.711 0.160 0.088 0.041
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Stepwise enthusiasts often claim that adding variables based on statistical signifi-
cance will improve the model’s predictions, by which they mean improve the fit for 
the data used to estimate the model. However, adding variables does not necessarily 
help, and may hurt, when a stepwise model is used to make predictions with fresh 
data.

Table  4 compares the in-sample and out-of-sample prediction errors using the 
mean absolute error (MAE):

and the root mean square error (RMSE):

The stepwise models consistently did substantially worse out-of-sample than in-sam-
ple. As the number of candidate variables increases, the in-sample fit improves, while 
the out-of-sample fit deteriorates, causing the ratio of the out-of-sample errors to the 
in-sample errors to balloon.

Out‑of‑sample validation

A model’s weaknesses can be exposed by the deterioration of the model’s fit using fresh 
data. It is therefore reasonable to hold out part of the available data for testing the esti-
mated model [36, 37]. The two parts of the data are labeled in-sample and out-of-sample 
or, more recently, training data and validation data.

It is always a good idea to test a model with fresh data. However, choosing a data-
mined model by using a repetitive cycle of in-sample estimation and out-of-sample test-
ing does not guarantee that the best model will be chosen.

Tireless data mining guarantees that some models will fit both parts of the data 
remarkably well, even if none of the models are meaningful. Just as some models are 
certain to fit the in-sample data by luck alone, so some models are certain to fit the out-
of-sample data as well. Uncovering a model that fits both the in-sample data and the 

(4)MAE =

∑n
t=1

∣∣∣Ŷ − Y
∣∣∣

n

(5)
RMSE =

√√√√
∑n

t=1

(
Ŷ− Y

)2

n
.

Table 4 In-sample and out-of-sample prediction errors, σx = 5 and σy= 20

Candidates No drift Drift

MAE RMSE MAE RMSE

In Out In Out In Out In Out

10 15.45 16.87 19.32 21.09 15.40 24.51 19.25 29.81

50 14.42 18.07 18.03 22.60 14.91 43.99 18.65 52.11

100 12.82 19.92 16.03 24.90 14.55 61.09 18.18 71.85

200 7.76 22.27 9.69 31.60 13.90 83.38 17.38 97.69

250 3.53 29.08 4.43 36.35 13.57 91.71 16.90 107.35

500 0.00 29.89 0.00 37.38 11.46 127.26 14.31 148.16

1000 0.00 31.12 0.00 38.28 6.04 182.83 7.57 212.64
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out-of-sample data is just another form of data mining. Instead of discovering a model 
that fits half the data, we discover a model that fits all the data. That doesn’t solve the 
fundamental problem, which is that models that are chosen solely to fit the data, either 
half the data or all the data, cannot be expected to fit new data nearly as well.

To illustrate this point, the Monte Carlo simulations were redone using σx= 5, σy= 20, 
and 100 candidate variables, with all 100 candidate variables being nuisance variables. 
This way, one cannot argue that a stepwise model with a good in-sample and out-of-
sample fit is a good model. Figure 1 shows the in-sample and out-of-sample RMSEs for 
the first 10,000 of 1 million simulations with no-drift data. (A figure with all 1 million 
simulations would be a dense blob). The average RMSE is 16.30 in-sample and 23.76 
out-of-sample.

Figure 1 shows that, although the out-of-sample RMSEs are generally larger than the 
in-sample RMSEs, there are many simulations in which the out-of-sample RMSE is close 
enough to the in-sample RMSE to suggest that a good model has been discovered—
when, in fact, all the models are just coincidental correlations. Specifically, the out-of-
sample RMSE is less than the in-sample RMSE 2% of the time, and within 10% of the 
in-sample RMSE 8% of the time. For similar simulations with the drift model, the out-
of-sample RMSE is less than the in-sample RMSE 5% of the time, and within 10% of the 
in-sample RMSE 15% of the time.

A persistent data miner would have no trouble finding a model that performs almost 
as well out-of-sample as in-sample, even though the model is useless because the vari-
able being predicted is only coincidentally related to the explanatory variables.

Discussion
In addition to stepwise regression, several other feature selection methods have been 
proposed to deal with the curse of dimensionality, which can be computationally 
demanding and lead to overfitting and inaccurate out-of-sample predictions due of 
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the inclusion of nuisance variables. For example, good results have been reported with 
recursive feature elimination with cross-validation [38, 39] and regularized tree ensem-
bles [40], which are two efficient ways of identifying a parsimonious set of predictors. 
One of the particular strengths of recursive feature elimination with cross-validation is 
that a feature selection method is most likely to be successful when it is validated with 
out-of-sample data.

The stepwise simulations reported here confirm the value of using theoretical argu-
ments or expert opinion to select the initial list of predictors. The stepwise regression 
models are much more successful when the procedure begins with 5 true variables and 5 
nuisance variables than with 5 true variables and hundreds of nuisance variables.

One appealing way to deal with ambiguous theory is to use a Bayesian approach that 
explicitly allows uncertainty about the relevance of potential predictors and does not 
force a binary choice between inclusion and exclusion. Bayesian regression combines 
the data with a prior distribution for the model’s parameters by using Bayes’ theorem 
to derive a posterior distribution for the parameters and for predictions made with 
the model. As the amount of data increases, the posterior means converge to the least 
squares estimates. The computations can be challenging, but have now become practi-
cal. Detailed examples can be found in [41–43].

Ridge regression implicitly uses prior distributions for the coefficients of the explan-
atory variables that have zero means, identical variances, and are independent [44]. It 
seems unlikely that the coefficients of predictors chosen on the basis of expert opinion 
would have prior means of zero. It is more appealing to use explicit priors instead of 
implicit priors.

Conclusion
Stepwise regression selects explanatory variables for multiple regression models based 
on their statistical significance. Although it has often been criticized for the misappli-
cation of single-step statistical tests to a multi-step procedure, stepwise regression has 
become popular with Big Data because it is a very efficient way of choosing a relatively 
small number of explanatory variables from a vast array of possibilities. The assump-
tion is that the larger the number of possible predictors, the more useful is stepwise 
regression.

This paper uses Monte Carlo simulations to demonstrate that a stepwise procedure 
may choose nuisance variables rather than true variables and that the out-of-sample 
accuracy of the model may be far worse than the in-sample fit. These problems are more 
likely to be serious when there are a large number of potential predictors. Stepwise 
regression does not solve the problem of Big Data. Big Data exacerbates the problems of 
stepwise regression.
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