IDS 702 Multicollinearity

Multicollinearity: the problem

 You cannot include two variables with a perfect linear association as predictors in regression

Coefficients	s: (1 not	defined bed	cause of	singulari
	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	0.04536	0.11495	0.395	0.694
X1	4.07300	0.11732	34.716	<2e-16
X2	NA	NA	NA	NA

Multicollinearity

- In real data, when predictors are collinear, we see standard errors inflate (which is bad)
- When might we get close:
 - Very high correlations ($|\rho| > 0.9$) among two or more predictors

When one or more variables are nearly a linear combination of others

Identifying multicollinearity

- Think about it during EDA
 - Is one variable derived from another?
 - \bullet
- Look at a correlation matrix of predictors
- Look at Variance Inflation Factor (VIF): measures how much the the regression coefficient for that variable

Do you expect a variable to always increase as another increases?

multicollinearity between a variable and other variables inflates the variance of

VIF

•
$$VIF_j = \frac{1}{1 - R_{X_j|X_{-j}}^2}$$

- VIF will always be ≥ 1 (Why?)
- Generally, VIF=
 - 1 \implies not correlated
 - Between 1 and 5 \implies moderately correlated
 - Greater than $5 \implies$ highly correlated
 - Greater than $10 \implies$ HIGHLY correlated and we want to do something about it

VIF in R

- vif(model) gives the VIF value for each predictor
- vif() function is in the car package

```
> auto_mod <- lm(mpg~displacement+horsepower+weight+
acceleration, data=Auto)
> vif(auto_mod)
               horsepower
displacement
                                 weight
   10.686922
                              10.284456
                 8.823022
acceleration
    2.603255
```


<pre>> auto_mod <- lm(mpg~displacement+horsepower+w</pre>						
acceleration+factor(origin),data=Auto)						
<pre>> vif(auto_mod)</pre>						
	GVIF	Df	GVIF^(1/(2*Df))			
displacement	13.022819	1	3.608714			
horsepower	9.378330	1	3.062406			
weight	10.492346	1	3.239189			
acceleration	2.604609	1	1.613880			

factor(origin) 1.985527 2

1.187050

What to do?

- Can remove one of the predictors
- Can scale the variables
- Tends to be unimportant in large samples
- Think through the application!