IDS 702 Introduction to multiple linear regression

Most relationships cannot be fully explained by two variables

(at least) some of the relationship between them

of ice creams sold

Confounding variables are related to both variables of interest and explain

Murder Rate

Directed Acyclic Graph (DAG)

https://health.ucdavis.edu/ctsc/area/Resource_Library/documents/directed-acyclic-graphs20220209.pdf

Multiple Linear Regression Model

$$y_i = \beta_0 + \beta_1 x_{i1} + \ldots + \beta_p$$

We can also write the model as:

$$y_i \stackrel{\text{iid}}{\sim} N(\beta_0 + \beta_1 x_{i1})$$

$$E[Y|X_1 = x_1, \dots, X_p =$$

$x_{ip} + \epsilon_i; \epsilon_i \stackrel{\text{iid}}{\sim} N(0,\sigma^2), i = 1,...n$

 $+\ldots+\beta_p x_{ip},\sigma^2)$

$= x_p] = \beta_0 + \beta_1 x_1 + \ldots + \beta_p x_p$

Matrix representation

 $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}; \boldsymbol{\epsilon} \sim \mathbf{N}(\mathbf{0}, \sigma^2 \mathbf{I})$

Interpreting coefficient estimates

- Each estimated coefficient is the amount Y is expected to increase when the value of the corresponding predictor is increased by one unit, *holding the* values of the other predictors constant
- What if the predictor is not continuous? Find out in the next video!

Which variable is the strongest predictor of the outcome?

- The coefficient that has the strongest linear association with the outcome variable is the one with the largest absolute value of T (test statistic), which equals the coefficient estimate over the corresponding SE
- Note: T is NOT the size of the coefficient and the size of the coefficient is not indicative of strength of association with the outcome
- Coefficients are sensitive to the scale of the predictors, but T is not

Inference: F test for overall association

Is there a relationship between the predictors (taken together) and the response?

$H_0: \beta_1 = \beta_2 = \dots = \beta_p = 0$

Inference: individual coefficient estimates

 $H_0: \beta_i = 0$

$$T = \frac{estimate - Null}{SE} = \frac{\hat{\beta}_j - 0}{SE(\hat{\beta}_j)}$$

$$CI = \hat{\beta}_j \pm SE(\hat{\beta}_j)C_{\alpha}$$

(GIVEN all the other variables in the model)