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Linear regression assumptions
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To check the assumptions, we look at the residuals

Linearity
|ndependence of errors
Normality of errors

Equal variance of errors



Linearity

* Plot the residuals vs each predictor (or vs fitted values)

 EXxpect to see no pattern: some pattern is usually an indication of a
relationship (often nonlinear) between the response and a predictor which has

not been captured in the model

 What to do”? Can consider a transformation in the predictor variable



Variable transformations

* Natural log transformation is most common
e Quadratic terms

e Consider interpretation



Linearity

1. Non-linearity of the Data,

Residual Plot for Linear Fit Residual Plot for Quadratic Fit
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Independence of errors

 Can plot residuals vs fitted values or residuals vs index of observations
(should look random)

e Generally enough to think about study design

e What to do? Consider a different model



Normality of errors

e gg-plot (quantile-quantile plot) compares the distribution of standardized
residuals to a standard normal distribution

» Clustering of the points around the 45 degree line usually implies normality
assumption is not violated

Normal Q-Q

* Generally the least important assumption
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Equal variance of errors (heteroscedasticity)

 Can plot residuals vs fitted values or residuals vs index of observations
(should be equally spread around 0)

 What to do? Can consider transforming the response variable (natural log
most common), or using weighted least squares estimation

» However, the issue Is usually minor



Equal variance of errors
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births_mod <- Im(weight ~ gained + sex, data=births14)
plot(births_mod)

Residuals vs Fitted Normal Q-Q
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Summary

 Check assumptions by plotting residuals
* Violations of linearity and independence can be “dealbreakers”
* Linear regression robust to violations of normality and equal variance

 Explore data and understand the domain



