Let \(X_1, X_2, ..., X_n \stackrel{iid}{\sim} F_{\theta}\)
Then the joint distribution of (\(X_1, ..., X_n\)) is given by \(f_{\theta}(x_1,...,x_n)=\prod_{i=1}^{n} f_{\theta}(x_i)\)
Now, we define the likelihood function as a function of the fix population parameter \(\theta\) : \(L(\theta)=f_{\theta}(X_1,...,X_n)=\prod_{i=1}^nf_{\theta}(X_i)\)
We want to find the value of \(\theta\) that maximizes the likelihood function and call it \(\hat{\theta}\)
Imagine we have a binary variable (e.g., disease status). n=100, where 30 have the disease.
We can use the Bernoulli distribution, so \(\prod_{i=1}^{n}p^{x_i} (1-p)^{1-x_i}\) and \(L(p)=p^{30}(1-p)^{70}\) , which we can plot over a range of values of \(p\)
Bias: Average distance from the population parameter
Standard Error (SE): standard deviation of the estimator (i.e., SD of the sampling distribution)
Mean Squared Error (MSE): combines standard error and bias
Let \(X_1, X_2, ..., X_n \stackrel{iid}{\sim} Poisson(\lambda)\)
Derive the MLE, \(\hat{\lambda}\), and determine if this is an unbiased estimator of \(\lambda\)
\(P(X=x)=\frac{\lambda^x e^{-\lambda}}{x !}\)